SERIES

CJTAE CJTAL

RoHS Compliant

The Cardinal Cappuccino Crystal Oscillator LVDS/ LVPECL TCXO

Features

- 3.3V supply voltage- configurable
- 10MHz to 250MHz LVDS and LVPECL outputs- configurable
- Better than 2Hz tuning resolution
- Low power, typically 23mA LVDS and 54mA LVPECL
- Temperature range: -30°C to +75°C
- Stability: ± 2.5 ppm
- Phase Jitter (12kHz 20MHz)

Applications

- Multimedia
- Computing
- Networking, etc.

Part Numbering Example: CJTA E 7 L Z - A3 B3 - XXX.XXX TS

CJTA	E	7	${f L}$	Z	A3	В3	XXX.XXX	TS
SERIES	OUTPUT	PACKAGE STYLE	VOLTAGE	ADDED FEATURES	OPERATING TEMP.	STABILITY	FREQUENCY	TRI-STATE
CJTA	L = LVDS	$7 = 7 \times 5$.	L = 3.3V	Z = Tape and Reel	$A3 = -30^{\circ}C \text{ to } +75^{\circ}C$	$B3 = \pm 2.5 ppm$		TS = Tri-State

E = LVPECL

Specification

Waveform	LVDS/ LVPECL
Frequency	10MHz to 250MHz
Operating Temperature Range	-30°C to +75°C
Storage Temperature Range	-40°C to +85°C
Supply Voltage	3.3V
Frequency Stability vs. Temp. Range	±2.5ppm
Input Current	23/54mA
Phase Jitter (12kHz to 20MHz):	0.4ps to 1.5ps rms max
Start-Up Time	10ms Max
Enable/ Disable Input Voltage	VIH \geq 0.7VDD or No Connection, VIL \leq 0.3VDD or Ground
Aging/ Year	±3ppm Max

CJTAE/ CJTAL 10MHz - 250MHz

Description

The Cardinal Cappuccino crystal oscillator is based on a high performance integrated circuit designed for use in Cardinal's continued expanding leadership products in the programmable frequency control industry. Cardinal's new Cappuccino design is today state of the art in oscillators. The Cappuccino line product features 10MHz to 1.5GHz with CJTAE/ CJTAL ranging 10MHz to 250MHz Output, 3.3V Supply Voltage, LVDS/ LVPECL commercial -20°C to +70°C and industrial temperature range -30°C to +75°C.

Cardinal's new CJTAE/ CJTAL series is competitively priced and has the lowest typical power consumption 23/54mA LVDS/ LVPECL (70% less power than the Fox XpressOTM oscillator), lowest jitter and best phase noise over 10kHz to 20MHz vs. the traditional fixed frequency quartz oscillators and Surface Acoustic Wave oscillators. Cardinal's programming centers utilize modern robotics, for testing, programming and 100% final testing as we do with all our programmable offerings. The Cardinal CJTAE/ CJTAL series line is offered in both ceramic and low cost plastic industry standard packages.

Cardinal's Cappuccino line fits in all applications requiring a reference frequency including Multimedia, Computing, Networking, consumer etc.

Absolute Maximum Ratings

Item	Symbol	Condition	Unit
Input Voltage	V _I	-0.5 to $V_{DD} + 0.5$	V
Output Voltage	V_{O}	-0.5 to $V_{DD} + 0.5$	V
Positive Supply Voltage	$V_{ m DD}$	4.2	V
Storage Temperature		-40 to +85	°C

DC Electric Characteristics $(T = 25^{\circ}C)$

Unless stated otherwise, the data presented here was taken over the following parameters, $V_{DD} = 3.3V \pm 10\%$, Ta = -30°C to +75°C (industrial)

	Symbol	Specification				
		Min	Тур	Max	Units	
	Power Supply Voltage	V_{DD}	2.97	3.3	3.63	V
Power Supply (V _{DD} ,	LVDS I _{DD}	I_{DD}		23		mA
GND pins)	LVPECL I _{DD}	I_{DD}		54		mA
	Current w/Output Disabled	I_{OED}		16		mA
	Rise Time	$V_{ m DD}$	100			μS

CJTAE/ CJTAL 10MHz - 250MHz

	Item	Crombal	Specification				
	Helli	Symbol	Min	Тур	Max	Units	
AC Characteristics							
Outputs							
	Frequency Range	F_{LVDS}	10		250	MHz	
	Stability		-2.5		+2.5	ppm	
	Operating Temperature		-30		+75	°C	
	Differential Output Voltage	V_{OD}	175	350		mV	
LVDS	V _{OD} Magnitude Change	$\Delta_{ m VOD}$			50	mV	
(OUT, nOUT)	Offset Voltage	V_{OS}		1.25		V	
	V _{OS} Magnitude	$\Delta V_{ m OS}$			50	mV	
	Duty Cycle	$DODC_{LVDS}$	45		55	%	
	Rise Time	t_R	125		350	ps	
	Fall Time	t_{F}	150		350	ps	
	Frequency Range	F _{LVPECL}	10		250	MHz	
	Stability		-2.5		+2.5	ppm	
	Operating Temperature		-30		+75	°C	
LVPECL	Output High Voltage	V_{OH}	V _{DD} - 1.03		V _{DD} 6	V	
(OUT, nOUT)	Output Low Voltage	$V_{ m OL}$	V _{DD} - 1.85		V _{DD} - 1.6	V	
	Differential Duty Cycle	$DODC_{LVPECL}$	45		55	%	
	Rise Time	t_R	150		250	ps	
	Fall Time	t_{F}	150		250	ps	
OE Turn On Time (<50MHz)		OE _{LOW/HIGH}			200	ns	
OE Turn On Time (>50MHz)		OE _{LOW/HIGH}			100	ns	
OE Turn Off Time		OE _{HIGH/LOW}			50	ns	
Jitter	Phase Jitter (12kHz to 20MHz)	tjit	0.4	0.9	1.5	ps rms	
Jillei	Period Jitter	$t_{ m RMS,DIFF}$		3	4.5	ps	
	1 enou jutei	t _{p-p, DIFF}		30	45	ps	

Performance Characteristic Curves

Unless otherwise specified, data is characterized over temperature range -30°C to +75°C and voltage range 2.97V - 3.63V.

 I_{DD} vs. V_{DD}

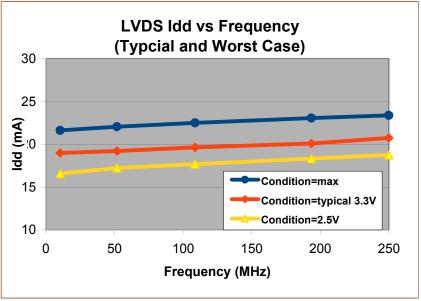
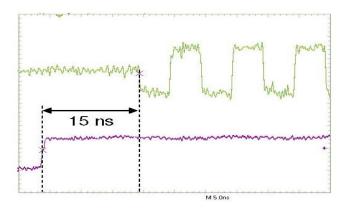



Figure 1. LVDS I_{DD} vs. Frequency, V_{DD}.



OE Turn-on and Turn-off Times

Notes:

- These measurements were all performed with an AC coupled output so that leakage currents do not affect the timing of the measurement. This results in all outputs floating to the midpoint of the signal levels when
- When LVDS is disabled the output goes to the common mode voltage (approximately 1.25V).
- When LVPECL is disabled the output goes to tri-state level which floats to Vol.

25 ns M 5.0ns

Figure 5. 3.3V LVDS OE Enabled Time

Figure 6. 3.3V LVDS OE Disabled Time

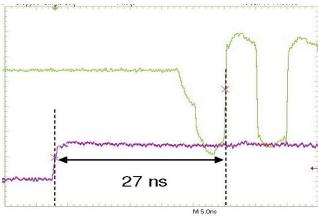


Figure 7. 3.3V LVPECL OE Enabled Time

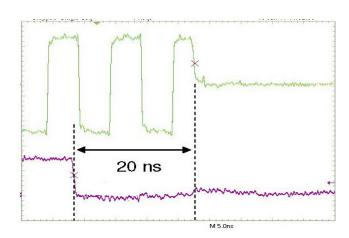


Figure 8. 3.3V LVPECL OE Disabled Time

CJTAE/ CJTAL 10MHz - 250MHz

Waveform Measurements

The following figures are descriptions for how the waveforms are measured for the datasheet applications.

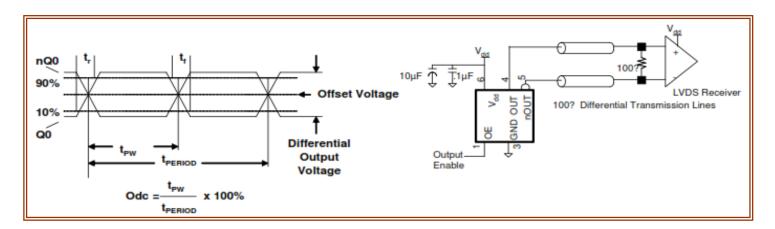


Figure 11. 3.3V LVDS waveform measurement test setup

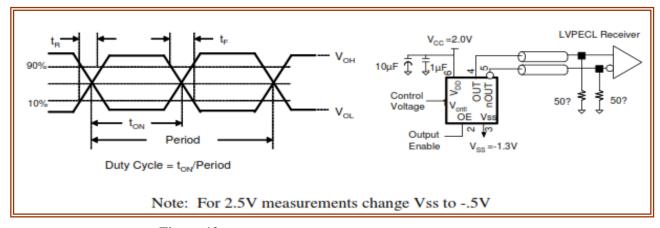


Figure 12. 3.3V LVPECL waveform measurement test setup

Application Information

Termination for 3.3V LVPECL Output

The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts offered are recommended only as guidelines.

OUT and nOUT are low impedance following outputs that generate LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to drive 50Ω transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. Figures 13 and 14 present two different designs. They are recommended only as guidelines. Other suitable clock layouts may exist and it would be recommended that the board designer simulate to guarantee compatibility across all printed circuit and clock component process variations.

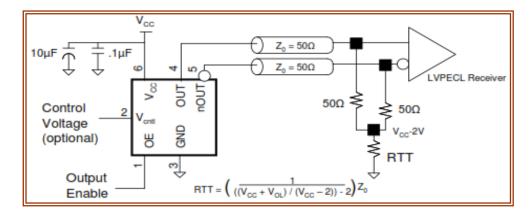


Figure 13. 3.3V LVPECL XO Application Schematic & Power Supply Decoupling

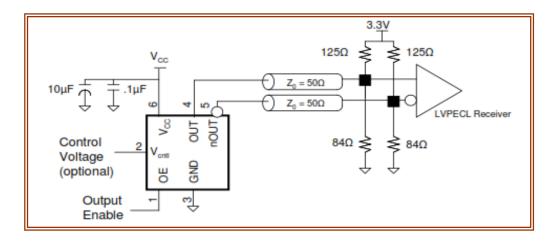


Figure 14. Alternante 3.3V LVPECL XO Application Schematic & Power Supply Decoupling

CJTAE/ CJTAL 10MHz - 250MHz

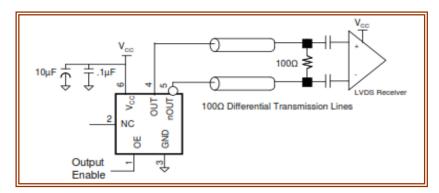
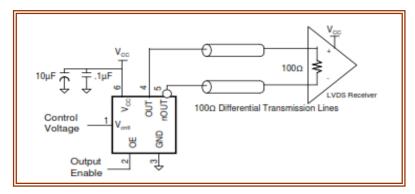
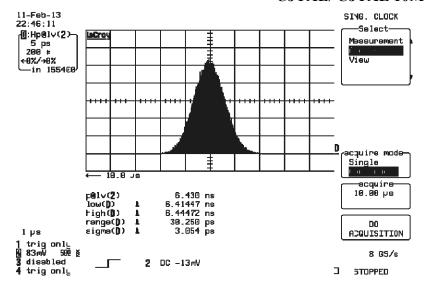
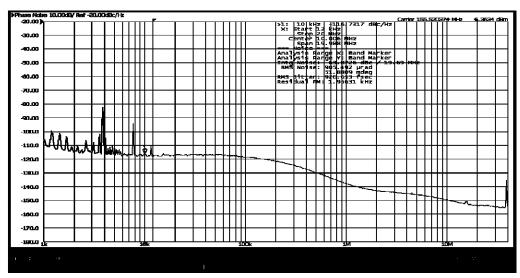
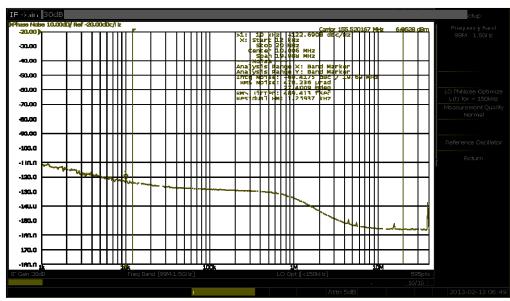


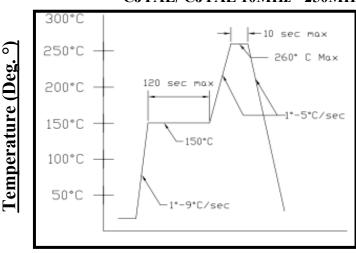
Figure 18. Termination for 3.3V LVDS Output


Figure 19. 3.3V LVDS XO Application Schematic & Power Supply Decoupling

CJTAE/ CJTAL 10MHz - 250MHz

Phase Noise & Jitter Plots



CJTAE/ CJTAL 10MHz - 250MHz

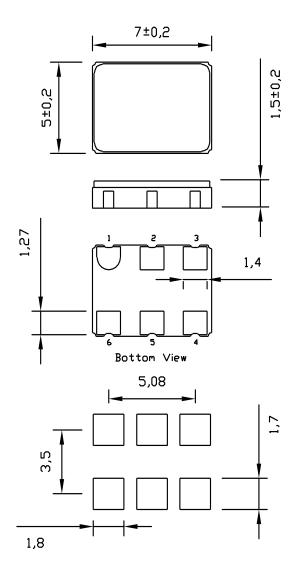
Recommended Solder Profile for Cardinal Components, Inc. Package Infared Reflow. Do Not Use Ultrasonic-Wave Soldering or Wave Solder with Package Immersed in Solder Damage to Crystal will result.

Time (sec)

Reliability

Cardinal Components Inc., qualification includes aging at various extreme temperatures, shocks and vibration, temperature cycling, and IR reflow simulation. The Cappuccino family meets the following qualification tests:

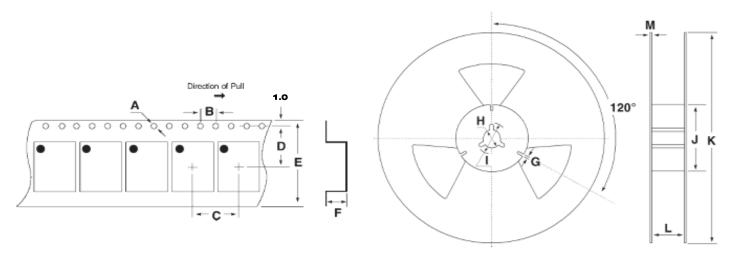
Environmental Compliance						
Parameter Conditions						
Mechanical Shock	MIL-STD-883, Method 2002					
Mechanical Vibration	MIL-STD-883, Method 2007					
Solderability	MIL-STD-883, Method 2003					
Gross and Fine Leak	MIL-STD-883, Method 1014					
Resistance to Solvents	MIL-STD-883, Method 2016					
Moisture Sensitivity Level	IPC/ JEDEC J-STD-020, MSL1					


Handling Precautions

Although ESD protection circuitry has been designed into the Cappuccino proper precautions should be taken when handling and mounting. Cardinal employs a human body model (HBM) and a charged-device model (CDM) for ESD susceptibility testing and design protection evaluation.

ESD Ratings									
Model Minimum Conditions									
Human Body Model	1000V	MIL-STD-883, Method 3015							
Charged Device Model	900V	JEDEC, JESD22-C101							
Machine Model	200V	JEDEC, JESD22-A115-A							

Style 7: 5x7mm


6 Pad	LVDS/ LVPECL
Pin 1	OE
Pin 2	Do Not Connect
Pin 3	GND
Pin 4	Out
Pin 5	nOUT
Pin 6	V_{DD}

145 Route 46 West Wayne, NJ 07470

CJTAE/ CJTAL 10MHz - 250MHz

Tape and Reel Specifications

Tape Specifications (mm)									
Package	PackageABCDEFQTY								
$7 = 7 \times 5$	1.5	4.0	8.0	7.5	16.0	2.2	1,000		

Reel Specifications (mm)									
Package G H I J K L M									
$7 = 7 \times 5$	2.0	13	21	60	180	17.0	1.25		