EURO QUARTZ

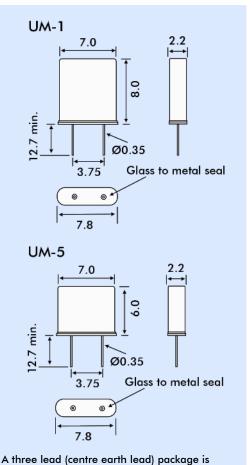
General specification for 'UM' family crystals

- Frequency range 1.0MHz to 200MHz
- High-precision crystal ideal for telecoms applications
- High quality resistance weld sealing
- Suitable for reflow soldering

DESCRIPTION

UM-1 and UM-5 crystals are a long-established design, being widely used in telecommunications applications where their compact size and ease of producing to close tolerances makes them an ideal crystal. In addition to the standard packages a 'Slimline' package is also available.

SPECIFICATION


Frequency Range				
1,5	UM-1	1.0MHz to 1.2MHz (SL-Cut) 8.0MHz to 200MHz (AT-Cut)		
	UM-5	12MHz to 200MHz (AT-Cut)		
Oscillation Mode:		See table		
Calibration Toleran	ce at 25°C			
SL-Cut (<1.3MHz):		from ±50ppm		
AT-Cut	(>4.0MHz):	from ±3ppm		
Frequency Tolerance				
	SL-Cut:	from ±100ppm -10° to +60°C		
	AT-Cut:	from ±3ppm 0° to +50°C		
Shunt Capacitance (C0):		4pF typical, 7pF maximum		
Load Capacitance (CL):		Series or from 8pF to 32pF		
		(Customer specified CL)		
Ageing:		±2ppm maximum, 1st year,		
		±1ppm per year thereafter.		
Drive Level:		100μW typical, 500μW maximum		
Crystal Holder:		Resistance-weld hermetic seal		
Supply format:		Bulk pack		

OUTLINE & DIMENSIONS

REACH

OFREE

0

PART NUMBER GENERATION

value is required)

Part numbers for UM-1 crystals are generated as follows:

Example: 16.00MHz UM-1/20/30/-10+60/18pF/60R
Nominal Frequency
Package UM-1 or UM-5
Calibration tolerance at 25°C (±ppm)
Temperature Stability over temp. range (±ppm)
Operating Temp. Range (°C) (Lower and upper limits)
Load Capacitance (SR for series or CL in pF)
Equivalent Series Resistance (Optional - use when special

available with the designation UM-1-3L

ESR and OSCILLATION MODE

Frequency Range MHz	Crystal Cut Osc. Mode	ESR Ω Max.
1.0 ~1.2	SL Fund.	5k
8.0 ~ 8.9	AT Fund.	80
9.0 ~ 10.9	AT Fund.	60
11.0 ~ 12.9	AT Fund.	40
13.0 ~ 45.0	AT Fund.	25
50.1 ~ 100.0	AT 3rd OT	40
80.0 ~ 200.0	AT 5th OT	80