

OVEN CONTROLLED CRYSTAL OSCILLATOR UNIT IN PCB BASED SMD PACKAGE, SIZE 25 X 22MM.

PRODUCT FEATURES

- SMD PACKAGE SIZE 25 X 22 X 11MM WITH 7 PADS.
- EXCELLENT LOW AGING RATES AND LOW PHASE NOISE.
- OPTIONAL CONTROL VOLTAGE AND REFERENCE VOLTAGE FUNCTIONS.
- LOW COST VERSION USING AT-CUT CRYSTAL IS AVAILABLE.

APPLICATIONS

- BASE STATIONS / GSM&CDMA
- TEST EQUIPMENT
- SATELLITE COMMUNICATION **SYNTHESIZERS**

SOCO27

PRODUCT SPECIFICATIONS

PARAMETER	SYMBOL	PARAMETER VALUES / LIMITS	CONDITIONS / REMARKS	
Nominal frequency	F _N	5.0 ~ 100MHz	SEE NOTE 1	
SUPPLY VOLTAGES	V_{DD}	3.3V OR 5.0V OR 12.0V	±5%, PLEASE CHOOSE	
POWER CONSUMPTION WARM-UP	P _{WUP}	<3.0W	_	
at Steady State	P _{OP}	<1.2W	@+25°C	
WARM UP TIME	t _{wup}	<180s	TO 5PPB FOR SC-CUT, TO 50PPB FOR AT-CUT	
OPERATING TEMPERATURE RANGE	T _{OP}	-20~+70°C/-30~+75°C/-40~85°C	OTHER OPTIONS POSSIBLE	
OUTPUT WAVEFORM LVTLL	V_{OH}/V_{OL}	$\geq 2.4 V_{DC} / \leq 0.4 V_{DC}$	@ OUTPUT LOAD 5 TTL INPUTS	
OUTPUT WAVEFORM HCMOS	V _{OH} / V _{OL}	≥90%V _{DD} / ≤10%V _{DD}	@ OUTPUT LOAD CL = 15PF	
OUTPUT WAVEFORM SINEWAVE	V_{P-P}	6dBm MIN / 10dBm MAX	\bigcirc OUTPUT LOAD RL = 50Ω	

NOTE 1: TYPICAL AVAILABLE FREQUENCIES ARE: 10MHz, 12.8MHz, 13.0MHz 15.36MHz, 16.384MHz, 19.2MHz, 19.44MHz, 20MHz, 25MHz, 26MHz, 38.88MHz,

FREQUENCY CHARACTERISTICS

SYMBOL	SC-CUT CRYSTAL AT-CUT CRYSTAL		
NOTE 1) Δf/F _N	±3PPB / ±5PPB / ±10PPB		
$(\Delta f/F_N)/s$	±0.01ppb/s	±0.1ppb/s	
(∆f/F _N)/d	±0.3ppb / ±0.5ppb / ±1.0ppb	±3ppb / ±5ppb / ±10ppb	
ALLY $(\Delta f/F_N)/y$	±30ppb / ±50ppb / ±100ppb	±300ppb / ±500ppb / ±1.0ppm	
$(\Delta f/F_N)/V$	±0.5РРВ	±5РРВ	
IOTE 2) $(\Delta f/F_N)/V_c$	±0.5 ~ 1.0ppm	±5 ~ 10ppm	
HZ j _{RMS}	–98dBc/Hz	–85dBc/Hz	
)Hz	-128DBC/Hz -115DBC/Hz		
00Hz	-150pBc/Hz -143pBc/Hz		
(Hz	-158DBC/Hz -154DBC/Hz		
OHz	-164dBc/Hz	−164dBc/Hz	
00κHz	−165dBc/Hz	–165dBc/Hz	
	$\begin{array}{c} \Delta f/F_N \\ (\Delta f/F_N)/s \\ (\Delta f/F_N)/s \\ (\Delta f/F_N)/d \\ (\Delta f/F_N)/y \\ (\Delta f/F_N)/V \\ (\Delta f/F_N)/V \\ (\Delta f/F_N)/V_c \\ (\Delta f/F_N)$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

NOTE 1: FREQUENCY STABILITY IS THE DEVIATIONS OVER OPERATING TEMPERATURE RANGE TOP IN REFERENCE TO FREQUENCY READING @+25°C.

NOTE 2: FREQUENCY ADJUSTMENT CAPABILITY APPLIES FOR UNITS WITH THE OPTION OF CONTROL VOLTAGE VC FUNCTION (REFER TO BELOW TABLE).

NOTE 3: FOR THE PARAMETERS IN ABOVE TABLE IS THE BEST PERFORMANCE SHOWN, OTHER OPTIONS ARE AVAILABLE, SOME DESIGNS MAY REQUIRE WIDER TOLERANCES.

OPTIONS FOR 3.3V AND 5.0V SUPPLY VOLTAGES (FOR 12V SEE NOTE 1)

PARAMETER	SYMBOL	For 3.3V		For 5.0V		
CONTROL VOLTAGE RANGE	V _C	0 ~ 2.8V _{DC}	0 ~ 3.3V _{DC}	0 ~ 4.0V _{DC}	0 ~ 5.0V _{DC}	
CONTROL CENTER VOLTAGE	V_{CEN}	1.4V _{DC}	1.65V _{DC}	$2.0V_{DC}$	2.5V _{DC}	
REFERENCE VOLTAGE OUTPUT	V_{REF}	2.8V _{DC}	N/A	4.0V _{DC}	N/A	
OVEN MONITOR OUTPUT	V _{OM}	OUTPUT AT LOW DURING WARM UP TIME, AT HIGH WHEN IN STEADY STATE				

NOTE 1: THE V_{DD} 12V VERSION IS AVAILABLE WITH A CONTROL VOLTAGE RANGE OF 0~5V, CENTER AT 2.5V, AND OPTIONAL REFERENCE VOLTAGE OUTPUT OF 5V.

OVEN CONTROLLED CRYSTAL OSCILLATOR UNIT IN PCB BASED SMD PACKAGE, SIZE 25 X 22MM.

SOCO27

MECHANICAL DIMENSIONS

ENVIRONMENTAL COMPLIANCE INFORMATION

- ROHS COMPLIANT PER (DIRECTIVE 2011/65/EC).
- COMPLIANT TO ROHS 2 (DIRECTIVE 2018/863) (ALSO CALLED ROHS10).
- NONE-USE OF SVHCS PER REACH IS CURRENTLY GIVEN, CONTINUOUSLY MONITORED AND UPDATED AS THE COMMISSION ISSUES NEW RELEASES.
- PRODUCT DOES NOT CONTAIN PVC (POLYVINYL CHLORIDE).
- PRODUCT DOES NOT CONTAIN PFOS/PFOA NOR BEING SAME USED TO MANUFACTURE THE COMPONENTS OF THIS PRODUCT.
- None-use of conflict minerals per the Dodd-Frank Wall Street Reform and Consumer Protection Act (Wall Street Reform Act).
- MOISTURE SENSITIVITY LEVEL (MSL) 1 PER J-STD-020C.

PACKAGING INFORMATION

- PACKAGING IN TAPE & REEL IN COMPLI-ANCE TO EIA-481.
- QTY PER REEL: 150PCS
- REEL DIA A=330MM.
- EMBOSSED CARRIER TAPE WIDTH W = 44MM.
- COMPONENT PITCH P1 = 32MM.
- ALTERNATE PACKAGING IN ESD CON-FORM FOAM TRAYS IS AVAILABLE.

PART NUMBER SYNTAX SOCO27 12 B10.000 E H1.0-RV PART NUMBER FAMILY (REPRESENTS PRODUCT MODEL AND PACKAGE SIZE) SUPPLY VOLTAGE NOMINATOR (i.e. 12= 12V, 50= 5.0V, 33= 3.3V) FREQUENCY STABILITY CODE (I.E. B=±50PPB, C=±100PPB, D=±30PPB, N=±5PPB, T=±10PPB) NOMINAL FREQUENCY (IN MHZ WITH AT LEAST THREE DIGITS AFTER DECIMAL POINT) OPERATING TEMPERATURE RANGE (I.E. E= -20~70°C, L= -30~75°C, W= -40~85°C) OUTPUT WAVE FORM INDICATOR (H= HCMOS, S= True sine wave, T= TTL OUTPUT) FREQUENCY MINIMUM PULLABILITY (OPTIONAL VC FUNCTION) (1.0= 1.0PPM MIN) REFERENCE VOLTAGE OUTPUT INDICATOR (OPTIONAL, EXTENSION ADDED IF AVAILABLE) FOR MORE INFORMATION PLEASE CONTACT US. IF THERE IS A LARGE NUMBER OF CODES IN USE THE TABLE ABOVE MAY ONLY SHOW A FEW EXAMPLES HONG KONG: China Shenzhen office: China Suzhou office: NAKAGAWA ELECTRONICS LIMITED 深圳中川晶体电子有限公司 苏州纳美电子有限公司 ***** +86(0)512 8818 7890 ■ sales_nm@nkg.cn +852 2341 0001 \\ www.nkg.com.hk +86(0)755 2598 2390 www.nkg.com.hk +86(0)512 8818 7889 www.nkg.com.hk